

AS Physics at

Hardenhuish School $6^{\text {th }}$ Form

Introduction

This booklet will assist you in getting better prepared to study AS Physics at Hardenhuish School . You must work through the booklet Bring your copy of the completed booklet to your first AS Physics lesson.

AS Physics	
Skills	

Topic	$\begin{array}{l}\text { Title }\end{array}$	$\begin{array}{l}\text { Comments. } \\ \text { Do you need more practice? } \\ \text { Are you confident with this area? } \\ \text { What areas of weakness have you }\end{array}$		
identified?			$]$	(date)
:---				

1. Prefixes and units

In Physics we have to deal with quantities from the very large to the very small. A prefix is something that goes in front of a unit and acts as a multiplier. This sheet will give you practice at converting figures between prefixes.

Symbol	Name	What it means		How to convert	
P	peta	10^{15}	1000000000000000		$\downarrow \times 1000$
T	tera	10^{12}	1000000000000	$\uparrow \div 1000$	$\downarrow \times 1000$
G	giga	10^{9}	1000000000	$\uparrow \div 1000$	$\downarrow \times 1000$
M	mega	10^{6}	1000000	$\uparrow \div 1000$	$\downarrow \times 1000$
k	kilo	10^{3}	1000	$\uparrow \div 1000$	$\downarrow \times 1000$
m	milli	10^{-3}	1	$\uparrow \div 1000$	$\downarrow \times 1000$
μ	micro	10^{-6}	0.001	$\uparrow \div 1000$	$\downarrow \times 1000$
n	nano	10^{-9}	0.000000001	$\uparrow \div 1000$	$\downarrow \times 1000$
p	pico	10^{-12}	0.000000000001	$\uparrow \div 1000$	$\downarrow \times 1000$
f	femto	10^{-15}	0.000000000000001	$\uparrow \div 1000$	

Convert the figures into the units required.

6 km	$=$	6×10^{3}
54 MN	$=$	m
$0.086 \mu \mathrm{~V}$	$=$	N
753 GPa	$=$	V
$23.87 \mathrm{~mm} / \mathrm{s}$	$=$	Pa

Convert these figures to suitable prefixed units.

640		$=$	640×10^{9}	V
		0.5×10^{-6}	A	
kN	$=$	93.09×10^{9}	m	
nm		32×10^{5}	N	

Convert the figures into the prefixes required.

s	ms	$\boldsymbol{\mu s}$	ns	ps
0.00045	0.45	450	450000 or 450×10^{3}	450×10^{6}
0.000000789				
0.00000000064				

$\mathbf{m m}$	\mathbf{m}	$\mathbf{k m}$	$\boldsymbol{\mu m}$	$\mathbf{M m}$
1287360				
295				

The equation for wave speed is:

$$
\begin{aligned}
& \text { wave speed }=\text { frequency } \times \text { wavelength } \\
& \qquad(\mathrm{m} / \mathrm{s})
\end{aligned}
$$

Whenever this equation is used, the quantities must be in the units stated above. At GCSE we accepted m / s but at AS/A Level we use the index notation. m / s becomes $\mathrm{m} \mathrm{s}^{-1}$ and $\mathrm{m} / \mathrm{s}^{2}$ becomes $\mathrm{m} \mathrm{s}^{-2}$.

By convention we should also leave one space between values and units. 10 m should be 10 m .
We also leave a space between different units but no space between a prefix and units.

This is to remove ambiguity when reading values.

Example ms^{-1} means $1 /$ millisecond because the ms means millisecond, $10^{-3} \mathrm{~s}$
but $\mathrm{m} \mathrm{s}^{-1}$ means metre per second the SI unit for speed. or mms^{-1} could mean $\mathrm{mm} \mathrm{s}^{-1}$ compared with $\mathrm{m} \mathrm{ms}^{-1}$
millimeters per second compared with meters per millisecond - quite a difference!!!
Calculate the following quantities using the above equation, giving answers in the required units.

1) Calculate the speed in $\mathrm{m} \mathrm{s}^{-1}$ of a wave with a frequency of 75 THz and a wavelength $4.0 \mu \mathrm{~m}$.

$$
v=f \lambda=75 \times 10^{12} \times 4.0 \times 10^{-6}=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\left(300 \mathrm{Mm} \mathrm{~s}^{-1}\right)
$$

2) Calculate the speed of a wave in $\mathrm{m} \mathrm{s}^{-1}$ which has a wavelength of 5.6 mm and frequency of 0.25 MHz .
3) Calculate the wavelength in metres of a wave travelling at $0.33 \mathrm{~km} \mathrm{~s}^{-1}$ with a frequency of 3.0 GHz .
4) Calculate the frequency in Hz of a wave travelling at $300 \times 10^{3} \mathrm{~km} \mathrm{~s}^{-1}$ with a wavelength of 0.050 mm .
5) Calculate the frequency in GHz of a wave travelling at $300 \mathrm{Mm} \mathrm{s}^{-1}$ that has a wavelength of 6.0 cm .
1. All non-zero numbers ARE significant. The number 33.2 has THREE significant figures because all of the digits present are non-zero.
2. Zeros between two non-zero digits ARE significant. 2051 has FOUR significant figures. The zero is between 2 and 5
3. Leading zeros are NOT significant. They're nothing more than "place holders." The number 0.54 has only TWO significant figures. 0.0032 also has TWO significant figures. All of the zeros are leading.
4. Trailing zeros when a decimal is shown ARE significant. There are FOUR significant figures in 92.00 and there are FOUR significant figures in 230.0.
5. Trailing zeros in a whole number with no decimal shown are NOT significant. Writing just " 540 " indicates that the zero is NOT significant, and there are only TWO significant figures in this value.
(THIS CAN CAUSE PROBLEMS!!! WE SHOULD USE POINT 8 FOR CLARITY, BUT OFTEN DON’T - $\mathbf{2 / 3}$ significant figures

6. For a number in scientific notation: $N \times 10^{x}$, all digits comprising N ARE significant by the first 5 rules; "10" and " x " are NOT significant. 5.02×10^{4} has THREE significant figures.

For each value state how many significant figures it is stated to.

Value	Sig Figs						
2		1066		1800.45		0.070	
2.0		82.42		2.483×10^{4}		69324.8	
500		750000		0.0006		0.0063	
0.136		310		5906.4291		9.81×10^{4}	
0.0300		3.10×10^{4}		200000		40000.00	
54.1		3.1×10^{2}		12.711		0.0004×10^{4}	

When adding or subtracting numbers

Round the final answer to the least precise number of decimal places in the original values.
Eg. $0.88+10.2-5.776(=5.304)=\underline{5.3}$ (to 1d.p., since 10.2 only contains 1 decimal place)
(Khan Academy- Addition/ subtraction with sig fig excellent video- make sure you watch .)
Add the values below then write the answer to the appropriate number of significant figures

Value 1	Value 2	Value 3	Total Value	Total to correct sig figs
51.4	1.67	3.23		
7146	-32.54	12.8		
20.8	18.72	0.851		
1.4693	10.18	-1.062		
9.07	0.56	3.14		
739762	26017	2.058		
8.15	0.002	106		
152	0.8	0.55		

When multiplying or dividing numbers

Round the final answer to the least number of significant figures found in the initial values.
E.g. $4.02 \times 3.1 \mid 0.114=(109.315 \ldots)=\underline{\mathbf{1 1 0}}$ (to 2 s.f. as 3.1 only has $\mathbf{2}$ significant figures.

Multiply the values below then write the answer to the appropriate number of significant figures

Value 1	Value 2	Total Value	Total to correct sig figs
0.91	1.23		
8.764	7.63		
2.6	31.7		
937	40.01		
0.722	634.23		

Divide value 1 by value 2 then write the answer to the appropriate number of significant figures

Value 1	Value 2	Total Value	Total to correct sig figs
5.3	748		
3781	6.50		
91×10^{2}	180		
5.56	22×10^{-3}		
3.142	8.314		

When calculating a mean

1) Remove any obvious anomalies (circle these in the table)
2) Calculate the mean with the remaining values, and record this to the least number of decimal places in the included values
E.g. Average 8.0, 10.00 and 145.60:
3) Remove 145.60
4) The average of 8.0 and 10.00 is $\underline{\mathbf{9 . 0}}$ (to $1 \mathrm{~d} . \mathrm{p}$.)

Calculate the mean of the values below then write the answer to the appropriate number of significant figures

Value 1	Value 2	Value 3	Mean Value	Mean to correct sig figs
1	1	2		
435	299	437		
5.00	6.0	29.50		
5.038	4.925	4.900		
720.00	728.0	725		
0.00040	0.00039	0.000380		
31	30.314	29.7		

[^0]
Skills 3. Converting length, area and volume

Whenever substituting quantities into an equation, you must always do this in SI units - such as time in seconds, mass in kilograms, distance in metres...

If the question doesn't give you the quantity in the correct units, you should always convert the units first, rather than at the end. Sometimes the question may give you an area in mm^{2} or a volume in cm^{3}, and you will need to convert these into m^{2} and m^{3} respectively before using an equation.

To do this, you first need to know your length conversions:
$1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm} \quad(1 \mathrm{~cm}=10 \mathrm{~mm})$

m ? cm	$\times 100$	cm ? m	$\div 100$
m ? mm	$\times 1000$	m ? mm	$\div 1000$

Always think -

"Should my number be getting larger or smaller?" This will make it easier to decide whether to multiply or divide.

Converting Areas

A $1 \mathrm{~m} \times 1 \mathrm{~m}$ square is equivalent to a $100 \mathrm{~cm} \times 100 \mathrm{~cm}$ square.
Therefore, $\quad 1 \mathrm{~m}^{2}=10000 \mathrm{~cm}^{2}$
Similarly, this is equivalent to a $1000 \mathrm{~mm} \times 1000 \mathrm{~mm}$ square;

So, $\quad 1 \mathrm{~m}^{2}=1000000 \mathrm{~mm}^{2}$

m^{2} ? cm^{2}	$\times 10000$	$\mathrm{~cm}^{2}$? m^{2}	$\div 10000$
$\mathrm{~m}^{2}$? mm^{2}	$\times 1000000$	$\mathrm{~m}^{2}$? mm^{2}	$\div 1000000$

Converting Volumes

A $1 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m}$ cube is equivalent to a $100 \mathrm{~cm} \times 100 \mathrm{~cm} \times 100 \mathrm{~cm}$ cube.

Therefore, $\quad 1 \mathrm{~m}^{3}=1000000 \mathrm{~cm}^{3}$

Similarly, this is equivalent to a $1000 \mathrm{~mm} \times 1000 \mathrm{~mm} \times 1000 \mathrm{~mm}$ cube;
So,

$$
1 \mathrm{~m}^{3}=10^{9} \mathrm{~mm}^{3}
$$

m^{3} [cm^{3}	$\times 1000000$	cm^{3} 回 m^{3}	$\div 1000000$
m^{3} - mm^{3}	$\times 10^{9}$	m^{3} [mm^{3}	$\div 10^{9}$

$6 \mathrm{~m}^{2}$	$=$	cm^{2}
$0.002 \mathrm{~m}^{2}$	$=$	mm^{2}
$24000 \mathrm{~cm}^{2}$	$=$	m^{2}
$46000000 \mathrm{~mm}^{3}$	$=$	m^{3}
$0.56 \mathrm{~m}^{3}$	$=$	cm^{3}

$750 \mathrm{~mm}^{2}$	$=$	m^{2}
$5 \times 10^{-4} \mathrm{~cm}^{3}$	$=$	m^{3}
$8.3 \times 10^{-6} \mathrm{~m}^{3}$	$=$	mm^{3}
$3.5 \times 10^{2} \mathrm{~m}^{2}$	$=$	cm^{2}
$152000 \mathrm{~mm}^{2}$	$=$	m^{2}

Now use the technique shown on the previous page to work out the following conversions:

$31 \times 10^{8} \mathrm{~m}^{2}$	$=$	km^{2}
$59 \mathrm{~cm}^{2}$	$=$	mm^{2}
$24 \mathrm{dm}^{3}$	$=$	cm^{3}
$4500 \mathrm{~mm}^{2}$	$=$	cm^{2}
$5 \times 10^{-4} \mathrm{~km}^{3}$	$=$	m^{3}

(Hint: There are 10 cm in 1 dm)

A 2.0 m long solid copper cylinder has a cross-sectional area of $3.0 \times 10^{2} \mathrm{~mm}^{2}$. What is its volume in cm^{3} ?

Volume = \qquad cm^{3}

For the following, think about whether you should be writing a smaller or a larger number down to help decide whether you multiply or divide.

Eg. To convert $5 \mathrm{~m} \mathrm{~ms}^{-1}$ into $\mathrm{m} \mathrm{s}^{-1}$ - you will travel more metres in 1 second than in 1 millisecond, therefore you should multiply by 1000 to get $5000 \mathrm{~m} \mathrm{~s}^{-1}$.

$5 \mathrm{~N} \mathrm{~cm}^{-2}$	$=$	$\mathrm{N} \mathrm{m}^{-2}$
$1150 \mathrm{~kg} \mathrm{~m}^{-3}$	$=$	$\mathrm{g} \mathrm{cm}^{-3}$
$3.0 \mathrm{~m} \mathrm{~s}^{-1}$	$=$	$\mathrm{km} \mathrm{h}^{-1}$
$65 \mathrm{kN} \mathrm{cm}^{-2}$	$=$	$\mathrm{N} \mathrm{mm}^{-2}$
$7.86 \mathrm{~g} \mathrm{~cm}^{-3}$	$=$	$\mathrm{kg} \mathrm{m}^{-3}$

AS Physics Skills
 4. Rearranging Equations

Rearrange each equation into the subject shown in the middle column.

$V=I R$	R	
$I=\frac{Q}{t}$	t	
$\rho=\frac{R A}{l}$	A	
$\varepsilon=V+I r$	r	
$s=\frac{(u+v)}{2} t$	u	

Eavaion		Rearnaegequation
$h f=\phi+E_{K}$	f	
$E_{P}=m g h$	g	
$E=\frac{1}{2} F e$	F	
$v^{2}=u^{2}+2 a s$	u	
$T=2 \pi \frac{m}{k}$	m	

5. Variables

A variable is a quantity that takes place in an experiment. There are three types of variables:

Independent variable - this is the quantity that you change

Dependent variable - this is the quantity that you measure

Control variable - this is a quantity that you keep the same so that it does not affect the results

You can only have one independent variable and one dependent variable, but the more control variables you have the more accurate your results will be.

Further to these, you can also split the independent variable category - this can be continuous or discrete.
A continuous variable can take any numerical value, including decimals. You will construct line graphs for continuous variables.

A discrete variable can only take specific values or labels (eg. integers or categories). You will construct bar charts for discrete variables.

For each case study below, state the independent variable, dependent variable, and any control variables described. Add further control variables, and state what type the independent variable is and what type of graph you will present the results with (if required).

Case study 1 - Measuring the effect of gravity

The aim of this experiment is to find out how fast objects of different masses take to fall from height. To conduct this experiment we used a number of spheres of the same diameter, which had different masses. Each sphere had its mass measured on electronic scales, before being dropped from a marker exactly 2.000 m from the floor. The time the sphere took to drop was timed on a stopwatch, and repeated 3 times for each sphere to gain an average time.

Independent variable: \qquad
Dependent variable \qquad

Control variables: \qquad
ype of independent variable: \qquad

Graph: \qquad

Case study 2-The number of children involved in different after school activities.
The aim of this study is to discover which activities are most popular so the correct resources can be supplied to the correct member of staff. On a certain day after school the number of children were recorded for the different activities they took.

Independent variable: \qquad

Dependent variable: \qquad

Control variables: \qquad

Type of independent variable: \qquad

Graph: \qquad

Case study 3 - How far does the spring stretch?
The aim of this experiment is to find how far different masses stretch a spring. A spring was hung from a clamp stand, and its length end to end measured. A 10 g mass was then added and the length of the spring measured and recorded. This was repeated adding 10 g between 0 g and 100 g .

Independent variable: \qquad

Dependent variable: \qquad

Control variables: \qquad

Type of independent variable: \qquad

Graph: \qquad

Case study 4 - What is the best design for a turbine?

A wind turbine is connected to a voltmeter and is placed 1.0 m from a desk fan. The potential difference produced for different number of blades attached to the turbine is measured. The aim is to see what design produces the largest potential difference.

Independent variable: \qquad
Dependent variable: \qquad

Control variables: \qquad

Type of independent variable: \qquad

Graph: \qquad

6. Constructing tables

The left hand column is for your independent variable.
The right hand column is for your dependent variable. You may split this up into further columns if repeats are carried out, and make sure you include an average column. Each sub column must come under the main heading (including the average column).

Place results in the table in order of independent variable, usually starting with the smallest value first.
Ensure each column contains a heading with units in brackets. No units should be placed in the table.
All measured values in one column should be to the same decimal place - don't forget to add zeros if necessary!
Any averages should be given to the same number of decimal places as the measured values. Remember to remove any anomalies by circling the results and do not include them in calculating your average.

Any calculated values should be given to a suitable number of significant figures/ precision.
At AS/A Level we don't use brackets to separate the quantity heading from the units but use a / .
Example: mass ($\mathbf{k g}$) should be written as mass / kg.
speed of car (m / s) should be written as speed of car / m sis

Independent Variable Heading /unit	Dependent Variable Heading /unit				
	1	2	3	Average	

A student forgot his exercise book when doing a practical on electrical resistance for a resistor. Below are his readings in the practical. He measured the current in the circuit three times for five different voltages. He has made many errors.

V : 0.11A, 0.1A, 0.12A
$2.0 \mathrm{~V}: 0.21 \mathrm{~A}, 0.18 \mathrm{~A}, 0.24$
$5 \mathrm{~V}: 0.5,5.1,0.48 \quad 4.0 \mathrm{~V}: 0.35 \mathrm{~A}, 0.40 \mathrm{~A}, 0.45$
3.0V: 0.33A, 0.6
0.30

Construct a suitable table for his results.

[^0]: AS Physics

